
Topic 2: Objects/Classes

1

1

 Java Programming

Objects and Classes

2

Overview

• Object-Orientation
• Historical perspective
• Objects and classes
• Constructors
• Terminology

3

Object-Orientation

• OOP replaces the structured
programming techniques of the early
70’s

• In structured programming the focus
was on the steps of the code

• With object-oriented programming
it’s entities with interfaces

Topic 2: Objects/Classes

2

4

First Generation (1954-1958)

Global Data

Subroutines

 Fortran I and Algol 58

5

Second Generation (1960’s)
Global Data

Subroutines

.
....Local

Data

....Local
Data

....Local
Data

6

Third Generation Languages
Global Data

Subroutines
.

....Local
Data
and

Code

...Local
Data
and

Code

...Local
Data
and

Code

Compilable Modules

Topic 2: Objects/Classes

3

7

Object-Oriented Languages

Data

Objects .
....Local

Data
and

Code

...Local
Data
and

Code

...Local
Data
and

Code

Data Data

Previously Global Data

8

Java is object-oriented

Data

Objects .
...

Code

Everything is part of some object

Data

.
...

Code

9

Object Oriented Languages
• Simula
• Smalltalk
• C++
• Ada95
• Eiffel
• Object Cobol
• Java

Topic 2: Objects/Classes

4

10

Objects and the
Code-Data Dichotomy

11

Turing Machine

1 0 1 1 1 1 11 110 0 10 0 0 0 ...

instructions and data encoded
on infinite binary tape

tape read head

instruction bits data bits

12

Turing Machine

von Neumann architecture

real computers: EDSAC, UNIVAC

assembly languages

Fortran Cobol

T
H
E
O
R
Y

R
E
A
L

HIGH-LEVEL LANGUAGES

Topic 2: Objects/Classes

5

13

Language Evolution

Fortran Cobol

Algol

Pascal
Modula

Ada

C
Cobol-74

Cobol-85

Cobol-85

SQL

CODE-Oriented Languages DATA-Oriented Languages

14

Language Evolution

Fortran Cobol

Algol

Pascal
Modula

Ada

C
Cobol-74

Cobol-85

Cobol-85

SQL

CODE-Oriented Languages DATA-Oriented Languages

Ada-95 C++ OO-Cobol
Java (JDBC)Object-Oriented Languages

15

Object Vocabulary

• Class
• Object
• Instance
• inheritance
• encapsulation
• messages

Topic 2: Objects/Classes

6

16

class, object, instance

• Class = the template from which
objects are created

AudioClip meow = new AudioClip()

class name object name

meow is an instance of the class
AudioClip -- it’s an object instance

17

class, object, instance

• Class = the template from which
objects are created

AudioClip meow = new AudioClip()

constructor
(a special method)

18

inheritance

• A class may stand alone as in:
class Hello { …

• A class may inherit functionality:
class MyApplet extends Applet {…

• the class inherited from is called the
base class

Topic 2: Objects/Classes

7

19

inheritance

• All classes in Java inherit functionality
from the class Object

class Hello { …

extends Object

20

encapsulation
• data is encapsulated within objects
• also called data-hiding

Data

Code

Object - a package of code and data

data often
referred to as
instance variables

21

messages
• code is packaged in methods (old

word is functions)
• we send messages to an object (to

execute a method -- call a function)

message
Data

Code

Topic 2: Objects/Classes

8

22

n Forces the allocation of functionality
(code) to objects

Data

Code

Data

Code

Data

Code

Data

Code

Obejct-oriented programs are collections of
objects sending messages to one another

An OO program

23

what is an object?

24

Object Definition

– An object is something that has:
• Behavior
• State
• Identity

Topic 2: Objects/Classes

9

25

Object Behavior

• All objects of the same class support
the same behavior (methods) -
– String s1 = “hello”;
– String s2 = “java world”;
– s1.length();
– s2.length();

26

Object State
• The state of an object refers to the

data an object contains
• The state of an object normally

changes over time - as it’s data values
change

27

Object Identity

– Each object has a unique identity, even if
its state is identical to that of another
object

x
b
z

x
b
z

stack1 stack2 myStack

variables can be
handles to objects

Topic 2: Objects/Classes

10

28

Objects and Classes
• A class is a way to define commonality

across a group of objects with:
– common data (attributes or properties)
– common behavior (methods or operations)

• An object is an instance of a class

29

Style Guide for Naming
Classes

• Classes are named using singular nouns
• Class names start with an upper case
• Underscores are not used

– Names composed of multiple words are
pushed together and the first letter of
each additional word is capitalized

– Example: Student, Professor,
BillingSystem

30

Object-Oriented Design

• How do you develop an OO
application?
Data

Code Data

Code

Data

Code

Data

Code

The allocation of code and data to
objects is a difficult design issue

Topic 2: Objects/Classes
g

11

31

Simple OO Design Strategy

• Nouns in the problem description
often describe classes
– Account, Customer, Budget

• Verbs often map to methods
– compute overtime
– cancel order
– estimate project duration

32

Class Relationships

• Uses
– sends a message to

• Containment (“has-a”)
– one object defined as a variable

reference within another object
• Inheritance (“is-a”)

– one object extends another

33

Classes without instances

• A class may simply exist without
instances
– The Console class (Horstmann)
– The Math class (java)

• Most common is using object
instances of a class

Topic 2: Objects/Classes
g

1 2

34

Classes with Instances
Defining an object variables
AudioClip meow;

String s;

Rectangle r;

Socket sock;

class name instance variable name

NO objects
exist yet!

35

Object Instances

• Define variable
AudioClip meow; //no object yet

meow.play(); //runtime error

• Create an object
meow = new AudioClip();

constructor (method)
--same name as class

36

Object Instances

• Create an object
AudioClip meow;

meow = new AudioClip();

meow.play(); // ok now

meow

play()

Topic 2: Objects/Classes

13

37

One Step Define/Create
• One Step define/create
AudioClip meow = new AudioClip();

meow

38

Multiple Object Instances

• Shape bebop, zing, zong;
• bebop = new Shape();
• zing = new Shape();
• zong = zing;

bebop

zing

zong

39

Null Object references

• bebop = null;
• if (bebop != null)

 bebop.show();
bebop

zing

zong

null

otherwise
runtime error

Topic 2: Objects/Classes

14

40

java.awt.Rectangle

41

java.awt.Rectangle class
public int x
public int y
public int width
public int height

public boolean contains (int x, init y)
public void setSize(int width, int ht)
public String toString();

data

methods

Rectangle r1 = new Rectangle(); // init to all zeros
Rectangle r2 = new Rectangle(1,1, 10,10);

42

java.awt.Rectangle class
public int x
public int y
public int width
public int height

public boolean contains (int x, init y)
public void setSize(int width, int ht)
public String toString();

data

methods

Rectangle r2 = new Rectangle(1,1, 10,10);
int k = r2.x + r2.y; //x and y are public
boolean b = r2.contains(4,4);

Topic 2: Objects/Classes
g

15

43

Design Rule

• The data in your classes should be
declared private

• This encourages information hiding
• Reduces effects of software changes

44

MyRectangle
private int x
private int y
private int width
private int height

public boolean contains (int x, init y)
public void setSize(int width, int ht)
public String toString();

methods

Rectangle r3 = new Rectangle();
int k = r3.x + r3.y; //illegal

data
(instance
variables)

45

Options for working with private data
members

1. Initialize
class Rectangle {
 private int x = 20;
 private int y; //defaults to zero
 private int width = 20;
 private int height = 40;

 public int computeArea () {
 return (width * this.height);
 }
} optional

Topic 2: Objects/Classes

1 6

46

Working with private data members...

2. Accessors (get) & Mutators (set)
class Rectangle {
 private int x = 20;
 private int y;
 private int width = 20;
 private int height = 40;

 public int getX () {return x;}
 public int getY () {return y;}
 public void setY (int y) {
 this.y = y;
 }

47

MyRectangle with get & set
private int x
private int y
private int width
private int height

public int getX { return x;}
public int setX (int xin) { x = xin;}
pulbic int getWidth { return width; }
pulbic int setWidth(int w) {width = w;}
public boolean contains (int x, init y)
public void setSize(int width, int ht)
public String toString();

data
(instance
variables)

methods

48

Accessor Methods

• get and set methods that read and
write private data

• example:
public int getWidth () {...

capitalize
variable name

having get but NOT
set means read-only

Topic 2: Objects/Classes

17

49

3. Constructors

 A class may specify several constructors to initialize
objects

 Rectangle r = new Rectangle (12, 33);
 Rectangle s = new Rectangle (10,20, 15, 34);

compiler figures out which one
by matching types

Working with private data members...

50

Constructor Methods
• Used with keyword new to create

objects
• Have same name as the class
• May take parameters or have none
• Have NO return values

public Rectangle () {
 x=50; y=50;
}

no return value

51

Constructor Gotcha!

public void Rectangle () {
 x=50;
 y=50;

}
this is not a constructor.
the compiler treats it as
a regular method!

Topic 2: Objects/Classes

g0 18

52

Object Creation and
Constructors

• Rectangle r = new Rectangle(11,22);

1. The java runtime attempts to
allocate memory for the new object

2. If insufficient free memory an
OutOfMemoryError is thrown --
program aborts

3. If ok memory, the constructor is
called to initialize new object

53

Default Constructors

54

Default no-arg Constructor

• All classes have a default no
argument constructor

class Foo {
 int x;

}

Foo f = new Foo();

initializes data to
default values

Topic 2: Objects/Classes

19

55

Constructor Gotcha!!

Rectangle r = new Rectangle (10, 20);
Rectangle s = new Rectangle (40, 50);
Rectangle t = new Rectangle ();

You cannot use the default
constructor if you define your
own constructor!

If you want a no-arg constructor,
you must explicitly define it!

56

this

• keyword used in non-static methods
• refers to object in which the method

is used
• Example:

void setWidth (int width) {

 this.width = width;

}

instance variable parameter

57

this...
• also used to refer to a constructor

within the same class

public Rectangle (int x) {

 this(x, 100);

}

refers to Rectangle(int, int)

Topic 2: Objects/Classes

20

58

Constructor Design
• Less specific constructors should call

more specific constructors
class Rectangle {
 ...

 public Rectangle (int x, int y) {
 this.x = x; this.y = y;
 }

 public Rectangle () {
 this(0, 0);
 }

59

method name overloading
class DataRenderer {
 void draw(String s) {
 . . .
 }
 void draw(int i) {
 . . .
 }
 void draw(float f) {
 . . .
 }

}

60

java.awt.Rectangle

• what data members?
• what constructors?
• what methods?

check out the documentation

Topic 2: Objects/Classes

2 1

61

Private Data

• Private data is not directly accessible
to methods outside the class

• Private data is accessible to all
methods within the class
– all data objects within the class!

(often a surprise but also the rule in c++)

62

not private within the class
class Rectangle {
 private int x;
 private int y;

 public boolean equals (Rectangle r)
{

 return r.x == x && r.y == y;
 }
}

private data access

63

Passing Parameters
• Java parameters use pass by value”
• The value of the passed parameter is

copied as the value of the parameter

class PassByValueTest {
public static void main (String [] args) {

double one = 1.0;
System.out.println(one);
halveIt(one);
System.out.println(one); }

Topic 2: Objects/Classes

22

64

class PassByValueTest {
public static void main (String [] args) {

double one = 1.0;
System.out.println(one);
halveIt(one);
System.out.println(one);

}

public static void halveIt (double arg) {
arg = arg / 2.0; // divide by two

 System.out.println(arg);
}

output:

1.0
0.5
1.0

65

Passing Object Parameters
• With object (reference) data types, an

address is passed
• The receiving method has access to

the object - the result is that an
object parameter can be changed

66

class PassByValue2 {
public static void main (String [] args) {

Rectangle r = new Rectangle (20,20);
System.out.println(r.x);
moveX(r);
System.out.println(r.x);

}

public static void moveX (Rectangle rect) {
rect.x = rect.x / 2; // divide x coordinate by two

 System.out.println(rect.x);
}

output:

20
10
10

the object reference is passed by value.

two object references (r and rect) refer to the
same Rectangle object in memory

Topic 2: Objects/Classes

2 3

67

Class Employee

68

Employee
String name

String salary

Day hireDay

Employee (String n, double s, Day d)

void print()

void raiseSalary(double byPercent)

String getName()

Day getHireDay()

69

private String name;
private double salary;
private Day hireDay;
// accessor methods
public String getName { return name;}
public Day getHireDay {

 return hireDay;

warning: returns an
object reference!

Topic 2: Objects/Classes

24

70

Returning object references
• Violates encapsulation when the

reference refers to private data
• A user can change the data via the

object reference

anEmployee

salary
name
hireDay aDay

Day dd =
 anEmployee.getHireDay();
dd.advance(20);

71

clone

• All objects (potentially) can be cloned
• The method clone returns a copy of

the object cloned

public Day getHireDay () {

 return (Day)hireDay.clone();

}

72

clone method

33
“fred”
99

boz -- instance of class Foo

Foo bar = boz.clone();

bar 33
“fred”
99

gotcha --
Foo must be declared as:
class Foo
 implements Cloneable

Topic 2: Objects/Classes

2 5

73

Initialization Blocks

74

initialization block

• an arbitrary block may appear in a
class definition -- outside a method

• the initialization block is executed
before the constructor code

• initialization blocks are never
necessary and almost always
confusing!

75

initialization block...
class Rectangle {
 private int x;
 private int y;
 private int width;

 public Rectangle (int x, int y) {
 this.x = x; this.y = y;
 }

 {width = 50;}
}

initialization
 block

??

Topic 2: Objects/Classes

2 6

76

Garbage Collection and
finalize

77

garbage collection

• objects no longer referenced are
garbage collected -- their memory is
returned to memory pool (the heap)

Foo f = new Foo(); f
f = null;

78

garbage collection

Foo f = new Foo(); f
f = null;

null

garbage collected

Topic 2: Objects/Classes

2 7

79

finalize method

• if you define a finalize method in your
class, finalize() will be called before
your object is garbage collected

• use finalize to free up system
resources

80

Static Methods and Fields

81

Static Fields

Class MyClass {
 public static int BUFSIZE = 99;
 public static double [] buf =

 new double[BUFSIZE];

how to initialize?

Topic 2: Objects/Classes

28

82

Static initializer

class MyClass {
 public static int BUFSIZE = 99;
 public static double [] buf =

 new double[BUFSIZE];
 static {
 for(int i = 0; i < buf.length; i++)
 buf[i] = java.lang.Math.random();
}

83

Static methods

class MyClass {
 public static int BUFSIZE = 99;
 public static double [] buf =

 new double[BUFSIZE];

 public int x = 10;
 private int y = 20;
 public static void foo () {
 … // can only access static vars & methods
}

84

Common use of main()
class MyClass {
 public static int BAR = 99;
 public void foo () {….}

 public static void main (String [] args) {
 MyClass myC = new MyClass();
 myC.foo(); // test an instance
 }
}

Topic 2: Objects/Classes

29

85

private methods
• Methods may be declared

– public
– private
– protected -- visible to subclasses
– “no keyword” -- visible to all classes in

your package
• Use private for those methods:

– not directly useful to class users
– likely to change

86

Summary
• Classes are the building blocks of

Java
• Object instances are created using

class constructors
• Classes may have static methods and

fields
• Object instances have non-static

methods and fields
• Rule: keep data private; use accessor

methods

87

Inheritance

Topic 2: Objects/Classes

30

88

relationship?

Employee Manager
is-a

is-a relationship
indicates inheritance

89

Employee

Manager

inheritance

superclass

subclass

class Manager extends Employee

note: subclasses have more
functionality thant he superclass

90

Inheritance

B myB = new B();
myB.bar ();
myB.foo();

A

public void foo();

class B extends A

public void bar ();

Topic 2: Objects/Classes

31

91

Inheritance - what about buzz?

B myB = new B();
myB.bar ();
myB.foo();

myB.buzz(); //??

A

public void foo();
private void buzz();

class B extends A

public void bar ();NOT allowed!
buzz is private, visible only
to methods within class A

92

protected
protected means that

code in a subclass can
use it

A myA = new A();
B myB = new B();
myA.pfoo(); // legal ??
myB.pfoo (); // legal ??

A

public void foo();
protected pfoo();

class B extends A

public void bar ();public void bar () {
 foo ();
 …...
 pfoo ();
}

93

Inheritance - superclass &
subclass

• The subclass inherits
all public and protected
fields and methods of
the superclass

• What if two methods
have the same name
and parameter types??

A

public int foo();

class B extends A

public void bar();

public int foo();

foo of B overrides
foo of A

the subclass
method overrides
the superclass
method

B myB = new B();

myB.foo();

Topic 2: Objects/Classes

32

94

subclass constructor

public Manager (Sring n, double n, Day d)
{ super(n,d,s);
 secretaryName = “”;
}

call to superclass constructor -
must be first statement

95

Required: call to superclass
constructor

• Subclasses always call their
superclass constructor - either

• Explicitly
– via super(..) in constructor

• Implicitly
– system will call no-arg constructor

• Gotcha!! -- your no-arg constructor
may not exist
– when??

96

Employee

Manager

subclass only needs to
specify what is different
from superclass

getSecretaryname()
setSecretaryName(..)

Topic 2: Objects/Classes

33

97

subclass (Manager) method

 public void raiseSalary(double byPercent)
 { // add 1/2% bonus for every year of service
 Day today = new Day();
 double bonus =

 0.5 * (today.getYear()- hireYear());
 super.raiseSalary(byPercent + bonus);
 }

superclass call

98

Inheritance and Typing
Employee

Manager

Because Manager is-a
Employee, it can be used
when the TYPE is Employee

99

Type safe assigment

Employee ed =
 new Manager(“edward koch”, 80000,
 new Day(1999,9,9));

can only use Employee methods on
object “ed”

Topic 2: Objects/Classes

3 4

100

Arrays (of the superclass)

Employee[] staff = new Employee[20];
staff[0] = ed; // a manager object
staff[1] = new Employee (“bob”, 45000,

new Day(1996, 9, 9));
staff[2] = new Manager (“dahlia”,

65000, new Day (1997, 8,8));
….

101

polymorphism

for (i=0; i< staff.length; i++) {
 staff[i].raiseSalary(8);
}

Employee objects have their
methods called and Manager
objects have their methods called

Late Binding

102

Late vs Static Binding

• Late Binding
– the actual method that gets called is

determined at run-time
• Static Binding

– the method to be called is determined at
compile time

Topic 2: Objects/Classes

3 5

103

Class Types

Manager ed =
 new Manager(“edd”, 20000,
 new Day (1999,10,20));
Employee[] staff = new Employee[20];
staff[0] = ed; // a manager object
...

edd.getSecretaryName() -- OK!

staff[0].getSecretaryName() -- NO!!

104

Casting with Class Types
Manager ed =
 new Manager(“edd”, 20000,
 new Day (1999,10,20));
Employee[] staff = new Employee[20];
staff[0] = ed; // a manager object
…
Manager topGun = (Manager)staff[0];

topGun.getSecretaryName() -- OK!

staff[0].getSecretaryName() -- NO!!

105

Casting

The compiler checks that
you do not promise too
much

topGun.getSecretaryName() -- OK!

staff[0].getSecretaryName() -- NO!!

Topic 2: Objects/Classes

36

106

Bad Cast
staff[3] =
 new Employee(“bob”, 35000,
 new Day(1998, 12, 25));
Manager bogus = (Manager)staff[3];
bogus.getSecretaryName();

throws an Exception

107

Ridiculous Cast
staff[3] =
 new Employee(“bob”, 35000,
 new Day(1998, 12, 25));
Manager bogus = (Rectangle)staff[3];

compiler won’t allow it!
Rectangle not in the Employee hierarchy

108

Protect with
instanceof

staff[3] =
 new Employee(“bob”, 35000,
 new Day(1998, 12, 25));

if (staff[3] instanceof Manager) {
 Manager bogus = (Manager)staff[3];

bogus.getSecretaryName();
}

Topic 2: Objects/Classes

37

109

Object - the
ultimate
superclass

A

public void foo();
public String toString();

class B extends A
public void bar ();

Object

public String toString();
public boolean equals (Object o);
public int hashCode ();
public Class getClass();

Classes often override
toString() and equals()

110

public Point push (Rectangle r)

access level

public
private
protected
package

return type

method name

agument list

method signature

111

member access
• Public

– Any class has access;
• Private

– most restrictive; accessible only within
same class; good object-oriented
practice is to define private data
members

– Protected
– The class methods and subclass methods

can access protected members
• Package

– visible within the package

Topic 2: Objects/Classes

3 8

112

Default = package visibility
class A {
 int x = 20;
 int foo() { return x*2; }
 public static void main (String args[] {
 B myB = new B();
 System.out.println

 (myB.bar (new A()));
}}

class B {
 int y;
 int bar (A myA) {
 return (myA.foo() * myA.x);
}}

filename = A.java

package visibility means
public for all classes in
the package

113

Package
• What you get if you don't specify

– public, private or protected
• Allows classes in the same package to

access members.
• Assumes that classes in the same

package are “trusted friends”

114

Multiple classes in ONE file
public class A {
 int x = 20;
 int foo() { return x*2; }
 public static void main (String args[]) {
 B myB = new B();
 System.out.println (myB.bar (new A()));
}}

class B {
 int y;
 int bar (A myA) {
 return (myA.foo() * myA.x);
}}

filename = A.java

OK!

Topic 2: Objects/Classes

39

115

Only ONE can be public
public class A {
 int x = 20;
 int foo() { return x*2; }
 public static void main (String args[]) {
 B myB = new B();
 System.out.println (myB.bar (new A()));
}}

public class B {
 int y;
 int bar (A myA) {
 return (myA.foo() * myA.x);
}}

filename = A.java

a public class must be in
a file of the same name!!

NOT
ALLOWED!

116

Subclasses &
Contracts
• A class is extended by

subclassing
– adding new data attributes

and methods to a subclass
• The collection of

methods and fields
accessible from outside a
class + the class
documentation defines
the class’ contract

117

Class Contract
A

public void foo();

B

public void bar();

Contract for object b is:
 foo & bar

B b = new B();

b : B
foo ()

bar ()

Topic 2: Objects/Classes

40

118

Polymorphism
A

public int foo();

B

public void bar();

public int foo();

Contract for object b is:

foo & bar

B b = new B();

foo of B overrides
foo of A

119

Be true to your superclass
• Do not write a

subclass so that you
violate the
superclass’ contract

foo()

foo()

computes next
leap year

public int foo () {; }

CONTRACT VIOLATION

120

It is OC (object-correct)
to override a “do-nothing”
or “default” method

foo()

foo()
computes next
leap year

public int foo () {; }

NOT A CONTRACT VIOLATION

Topic 2: Objects/Classes

4 1

121

Example: overriding Object’s equals()

Object

public boolean equals(Object o);

MyRectangle

public MyRectangle(int x, int y, int w, int h);

true if the two object
references point to the
same object

MyRectangle r1 = new MyRectangle (10, 20, 30, 40);

MyRectangle r2 = new MyRectangle (10, 20, 30, 40);

false <-- r1.equals(r2);

122

Overriding Object’s equals()

Object

public boolean equals();

MyRectangle

public MyRectangle(int x, int y, int w, int h);
public boolean equals(MyRectangle r);

MyRectangle r1 = new MyRectangle (10, 20, 30, 40);
MyRectangle r2 = new MyRectangle (10, 20, 30, 40);

true <-- r1.equals(r2);

if ((this.x==r.x) &&
 (this.y==r.y) &&
 (this.w==r.w) &&
 (this.h==r.h))
 then return true
 else return false;

123

java.awt.Rectangle
• Overrides:

– equals
• returns true if two Rectangles have same x,y,

height and width
– toString

• displays useful description
– java.awt.Rectangle[x=10,y=20,width=30,height=40]

• default (from Object) is:
– Employee@afc6fab8

Topic 2: Objects/Classes

42

124

using super in methods

A

public boolean foo();

B extends A

public boolean foo();
public void bar ();

public boolean bar () {
 boolean b = super.foo();
 boolean c = foo();
 return (b && c);

}

125

Class declarations
• class Rectangle {

– visible to other class in the same package
• public class Rectangle {

– visible to any class that imports Rectangle’s
package or is part of that package

• public final class Rectangle {

– the class cannot be subclassed
• public abstract class Rectangle {

– cannot create instances of the class

– Rectangle r = new Rectangle() ; // ILLEGAL

126

abstract classes

Topic 2: Objects/Classes

43

127

Hierarchy Structure

Message

VoiceMessage TextMessage FaxMessage

we want all subclasses to have certain
behavior -- each implemented its own way

make
abstract

128

abstract class

public abstract class Message {
 ...
 public abstract void play();
}

you cannot provide code
in this class

129

abstract class

public abstract class Message {
 ...
 public abstract void play();
}

if you declare one method
abstract you must declare
the class abstract

Topic 2: Objects/Classes

44

130

abstract class

public abstract class Message {
 ...
 public abstract void play();
}

you cannot create an instance
of an abstract class

131

public abstract class Message {
 private String sender;
 public Message (String from) {
 sender = from;

}
 public abstract void play();
 public String getSender() {
 return sender;
 }
} abstract class can have

non-abstract methods and data

132

Message

VoiceMessage TextMessage FaxMessage

all non-abstract subclasses MUST
implement any abstract methods
defined in Message class

abstract

Topic 2: Objects/Classes

4 5

133

Abstract Classes

• A class may be declared abstract
even though it has no abstract
methods

• Abstract classes cannot be
instantiated

• Variables can be declared as abstract
class types but must refer to
instance of concrete class

134

example

• Message m1 = new TextMessage(“hi”);

must conform to interface
defined in Message class -- which
is what we want in our design!

135

TextMessage classes
class TextMessage extends Message {
 private String text;

 public TextMessage(String from, String t) {
super(from);
text = t;

 }

 public void play() { System.out.println(text); }
}

Topic 2: Objects/Classes

46

136

Vectors

137

the class Vector
• An “array” of objects that grows

when necessary
• VERY useful when you don’t know in

advance how many elements you’ll
need

• To use: import java.util.*;

138

Vector
• Does not store primitive types

 (int, float, etc.)
• For primitive types use Wrapper

classes
• Vector stores only instances of

Object
• Vector elements can be null

Topic 2: Objects/Classes

47

139

Vector Declaration

Vector v;

But more common is...

140

Creating a Vector instance

Vector v = new Vector();

141

Creating a Vector instance

Vector v = new Vector();

Declaration Allocation &
Assignment

Vector has initial capacity of 10

It’s size (number of actual
elements) is 0

Topic 2: Objects/Classes

4 8

142

Creating a Vector instance

Vector v = new Vector(20);
Constructor

creates a Vector with 20
object capacity

143

Creating a Vector instance

Vector v = new Vector(20,10);
Constructor

creates a Vector for 20 objects
and when more space is needed,
allocates new slots 10 at a time

144

addElement
• add an element

– void addElement(Object obj);

Vector v = new Vector (20);
v.addElement(new Employee ());
v.addElement(new Manager());

or any subclass

Topic 2: Objects/Classes

4 9

145

elementAt
• add an element

– Object elementAt(int idx);

Vector v = new Vector (20);
v.addElement(new Employee ());
v.addElement(new Manager());
Object myObj = v.elementAt(0); // OK!

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 8 >= 2

Object myObj = v.elementAt(8); // NO!

146

elementAt returns TYPE Object

Employee ed = v.elementAt(0);

OK with CAST

Employee ed =(Employee)v.elementAt(0);

but if you’re wrong -- will throw EXCEPTION

ILLEGAL!

147

Bad Cast is Possible

Exception in thread "main"
java.lang.ClassCastException: Employee
 at VectorTest.main(VectorTest.java:24)

Manager ed =(Manager)v.elementAt(0);

Topic 2: Objects/Classes

50

148

instanceof
if (v.elementAt(0)
 instanceof Employee) {
 Manager ed
 =(Manager)v.elementAt(0);
 ….
}

149

Vector Methods

• boolean contains (Object obj)
– determines if an object is in the vector
– the two object references must refer to

the SAME object
• Object removeElementAt (int idx)

– removes the element at the specified
index

– if idx is not valid, throws
ArrayIndexOutOfBounds exception

150

Vector Methods...

• boolean isEmpty ()
– true if the vector contains no elments

• int capacity ()
– how many elements can the Vector hold

before expansion is necessary

Vector v = new Vector(20,10);

size=0, capacity=20

Topic 2: Objects/Classes

5 1

151

Vector Iteration

Vector vec = new Vector();
……
for (int i=0; i< vec.size(); i++)

System.out.println(vec.ElementsAt(i));

152

Vectors and Primitive Types

• You can’t create a vector of ints,
floats or any other Java primitive
type

• Java has wrapper classes specifically
to turn your favorite primitive into an
object

Integer classintintValue()

153

Wrapper Classes
(one for each primitive type)
• Integer
• Float
• Double
• Long
• Character
• ...

Topic 2: Objects/Classes

5 2

154

Using Wrapper Classes

• Vector v = new Vector();
• Integer myInt = new Integer (33);
• v.addElement (myInt);

• Object oz = v.elementAt(0);
• int k = ((Integer)oz).intValue();

155

The class Class

156

the java runtime

foo()

Employee e = new Employee()

runtime looks up
information about the
class of the object

Employee

Topic 2: Objects/Classes

5 3

157

the class Class

programmers have access to this
information about the class
Employee thru the class Class

Employee

158

ONLY one instance of the class Class
exists for each class in your program

Employee

Rectangler1

r2

ed

edd raj

you don’t create it -- you access it!

159

use the getClass method to obtain a
reference to a Class instance

instance
of Classr1

r2

Class clr = r1.getClass();
Class clz = r2.getClass();

clr clz

Topic 2: Objects/Classes

54

160

getName

• A class object can tell you its name

getName()

“java.awt.Rectangle”

Rectangle class (of java.awt)

161

Create a Class instance
using its name

• Class myc = Class.forName(“Employee”);

Will throw Exception if
no such class exists

Employee class
object

162

Create an Employee

• Class myC = Class.forName(“Employee”);

Employee class
object

• Employee raj = myC.newInstance();

instance of
Employee

must have no-arg constructor

Topic 2: Objects/Classes

55

163

Create instance from a
String

• String s = “Manager”
• Object m

 = Class.forName(s).newInstance();

returns TYPE Object -- must cast
to get Manager functionality

164

Other Class methods

• isInstance(Object obj)
– returns true if obj is an instance of the

class
• isAssignableFrom(Class other)

– returns true if instance other is a
subclass of the class receiving the
message

165

Reflection

Topic 2: Objects/Classes

56

166

Reflection

• Reflective programs analyze the
properties of other programs and
classes

• What are the public methods of a
class?

• What are the public fields?
• What are the constructors?

167

the class Class

Employee

bob

getName()

getFields()
getMethods()

getConstructors()

return class types defined in
java.lang.reflect

168

java.lang.reflect.*

• Field
– a class that knows about fields

• Constructor
– a class that knows about constructors

• Method
– a class that knows about methods

Topic 2: Objects/Classes

5 7

169

the class Class

the class
Point

class
Employee

getFields

class
Graphics

instance

array of Field
objects -
includes
public and
inherited
fields

170

the class Class

the class
Point

class
Employee

getMethods

class
Graphics

instance

array of
Method objects
-includes public
and inherited
methods

171

the class Class

the class
Point

class
Employee

getConstructors()

class
Graphics

instance

array of
constructor
objects -based
on public
constructors

Topic 2: Objects/Classes

58

172

Basic
Exception Handling

173

What’s an Exception
• A signal that indicates an exceptional

condition (something unexpected) has
happened in your program

• To throw an exception is to signal that
an exceptional condition has occurred

• To catch an exception is to handle the
exception - to take whatever action is
necessary
– sometimes you can’t do anything

174

Why Exceptions?
• Exceptions allow the programmer to

treat error conditions outside the
main logic flow

• Most programming languages (without
exceptions) handle errors by passing
return codes as error indicators

Topic 2: Objects/Classes

5 9

175

example
public class ExceptionTest {
 public static void main
 (String [] args) {
 int k = 20;
 int m,j;

 m = k/j;
 System.out.println
 ("m is " + m);
 }
}

Div by Zero

Exception in thread main:
java.lang.ArithmeticException

176

exception handling
int m=0;
try {
 m = k/j;
}
catch (ArithmeticException e) { }

System.out.println("m is " + m);

177

Handling Exceptions
the complete story

try {

 // code that might

 // throw an exception

} catch (ExceptionType variable) {

 // handle the exception if thrown

} finally {

 // .. always do this

}

Topic 2: Objects/Classes

60

178

Threads

179

What is a Thread?

a single flow of control
within a program

sequential programs
have one thread

180

A Multi-Threaded Program
multiple flows of control

may run on multiple CPUs

Topic 2: Objects/Classes

61

181

A Multi-Threaded Program

may run on one CPU with
time-sharing OS

multiple flows of control

182

Multiple Threads in
Browsers
Moonscape v 1.0

Java Net Home Page

Do all assignments and

you will be a JAVA

graphics load in a separate thread

183

Why Threads?
• Provides parallel computation with low

overhead
• Use threads when a program may

need to wait for some resource
– disk access, network connection

• When one thread is waiting, other can
continue processing

Topic 2: Objects/Classes

6 2

184

Threads vs Processes
• A process has its own address space

– In a multitasking operating system, each
program is run as a separate process

– Process switching has overhead
• A thread shares the address space of

the the program that created it
– minimal overhead with thread switching

185

the “main” thread
• All java applications have a “main”

thread -- started up when the static
main method is executed

• To put the current thread to sleep
send the sleep message to the Thread
class as in:
– Thread.sleep(millisecs)

186

Thread.sleep()
 for (int i=0; i<100; i++) {

 if (i == 10)
try { Thread.sleep(2000); }
catch (Exception e) {}

 else System.out.println(i);
 }

Topic 2: Objects/Classes

6 3

187

Interfaces

188

Java Interface
• An alternative to abstract classes
• An interface specifies only method

signatures:
– method name
– return value
– parameters and types

• Abstract class can define:
– data variables
– concrete methods

189

interface

public interface Drawable {
 public void setColor(Color c);
 public void setPosition(double x, double y);
 public void draw(Graphics g);
}

Topic 2: Objects/Classes

64

190

interface

public abstract interface Drawable {
 public void setColor(Color c);
 public void setPosition(double x, double y);
 public void draw(Graphics g);
}

Keyword
OPTIONAL!

191

classes implement interfaces

public class Triangle implements Drawable {
 public void setColor(Color c) {
 // code;
 }
 public void setPosition(double x, double y) {
 ….;}
 public void draw(Graphics g) {
 ….;}
}

192

extend only one class
implement multiple classes

public class Triangle extends Shape
implements Drawable, Serializable {

 ….
}

the class Triangle must implement all
methods in all interfaces -- but they can
be as simple as { }

Topic 2: Objects/Classes

65

193

Interface as Data Type
Drawable myShape;
myShape = new Triangle();

Drawable [] shapes = new Drawable[5];
shapes[0] = new Triangle();
shapes[1] = new Circle();

Assumes Circle and Triangle both
implement Drawable

194

Drawable [] shapes = new Drawable[5];
shapes[0] = new Triangle();
shapes[1] = new Circle();

shapes[1].setColor(Color.blue);
a1 = shapes[1].area(); // NOT OK!!

Can only execute methods
defined as part of the interface

195

interface variables
(rarely seen)

public interface Drawable {
 private static final prefColor = Color.red;

 public void setColor(Color c);
 public void setPosition(double x, double y);
 public void draw(Graphics g);
}

Only static final variables are
allowed in an interface

Topic 2: Objects/Classes

6 6

196

The Cloneable Interface

197

Copy vs Clone

• COPY
Day bday = new Day(1960, 12,1);

• Day d = bday;
• d.advance(100);

– // both are advanced! the two
references refer to the same object

198

Clone
• Some classes implement the Cloneable

interface - e.g. Day
• Day bday = new Day(1960,12,1);
• Day d = (Day)bday.clone();
• d.advance(100);

Topic 2: Objects/Classes

g6 7

199

the method clone()

• Defined as a protected method in
class Object

• It will copy all the data items and
references into a new object
– the actual references will remain the

same
• If you want otherwise you must

override clone() in your class

200

Interfaces and Callbacks

201

notation

object A

an instance of class A

Topic 2: Objects/Classes

68

202

Callback Scenario

object A object B

object A sends a message to
object B -- please notify me (call
me back) sometime in the future

notify(this)

203

Callback ...

object A object B

at some time in the future some
event triggers B to send a
message to A

hey()

alert

204

class B {
 A myContact;

 void notify (A someObj) {
myContact = someObj;

 }

 void alert () {
myContact.hey();

 }
}

class A {
 void hey()
 {

 System.out.println("got the message");
 }
}

Topic 2: Objects/Classes

69

205
this works BUT….

 public class CallBackTest2 {
 public static void main (String [] args) {

 A myA = new A();
 B myB = new B();
 myB.notify(myA);
 myB.alert();

}

myA

3: hey()
myB

1: notify()

2: alert()

206

object A object B

hey()

alert

object C

??

object C must be a
subclass of class A

what about other classes?

207

object A object B

hey()

alert

object C

how can we guarantee
that any class will
understand hey() ??

object Z

hey()

hey()

Topic 2: Objects/Classes

7 0

208

object A object B

hey()

alert

object C

object Z

hey()

hey()

have each class
implement an Interface
with hey()

209

KnowHey Interface

public interface KnowHey {
 public void hey ();
}

210

class B {
 KnowHey myContact;

 void notify (KnowHey someObj) {
myContact = someObj;

 }

 void alert () {
myContact.hey();

 }
}

class A implements KnowHey{
 public void hey()
 {

 System.out.println("got the message");
 }
}

class B can call back
any object that
implements the
KnowHey interface

Topic 2: Objects/Classes

7 1

211

KnowHey
interface

object B

hey()

alert

when object B is primarily a
callback object, use a
constructor with interface type

Constructor with interface type

212

class B {
 KnowHey myContact;

 public B (KnowHey obj) {
 myContact = obj;

 }

 void alert () {
 myContact.hey();

 }
}

constructor handles
registration of object
for callback

213

Inner Classes

Topic 2: Objects/Classes

72

214

Inner class

• A class defined within another class

inner class

215

Why Inner classes?

• Objects of the inner class can freely
reference the data of enclosing class
(incl private data)

• An inner class is hidden from other
classes in the same package

• Anonymous inner classes useful for
callbacks

• Convenient for event-driven programs

216

Sleeping Threads

Topic 2: Objects/Classes

73

217

Thread.sleep()
 for (int i=0; i<100; i++) {

 if (i == 10)
try { Thread.sleep(2000); }
catch (Exception e) {}

 else System.out.println(i);
 }

218

How does Thread.sleep() work?

main
thread

Thread

sleep()

a request to put the currently
executing thread to sleep

219

Thread World

Thread
class

The Operating System

The “Runnable” pool of threads

I say
who gets
to run ()talks to

thread-1

thread-2

thread-3

Topic 2: Objects/Classes

74

220

Thread World

Thread
class

The Operating System

The “Runnable” pool of threads

I say
who gets
to run ()put the main-

thread to sleep

main-thread

221

Thread World

Thread
class

The Operating System

The “Runnable” pool of threads

I say
who gets
to run ()put the main-

thread to sleep

main-thread

Sleep area

222

Creating a Thread
with the run () method

• Two ways to create a Java thread:

– Extend the Thread class and override
the run () method

– Implement the Runnable interface
• define run () either way, there

is a thread object

whatever code is in run () will
be run as a separate thread

Topic 2: Objects/Classes

75

223

Subclass Thread

Thread
class

MyThread
inherits

has run() method
that does nothing

override run() -
that’s what your
thread will do

224

Subclassing Thread
class SimpleThread extends Thread {
 private String internalName;

 SimpleThread (String name) {
 internalName = name;
 }

public void run() {

 for (int i=0; i<5; i++) {
 System.out.println(internalName);
 }
 }
}

225

Activating your thread
myThread instance

run ()

The Java
runtime system
sends the run
message

the programmer sends
the start message to
the thread object

myThread.start ()

Topic 2: Objects/Classes

76

226

public class SimpleThreadTest1 {
 public static void main (String argv[]) {
 SimpleThread t1 = new SimpleThread("sun");
 SimpleThread t2 = new SimpleThread("java");
 SimpleThread t3 = new SimpleThread("beans");

 t1.start();
 t2.start();
 t3.start();
 }
}

(Continued è)

The Operating System

The “Runnable” pool of threads

t1

t2
t3

227

 class SimpleThread extends Thread {
 String internalName;

 public void run() {

 for (int i=0; i<5; i++) {
 System.out.println(internalName);
 }
 }
}

Output:
sun
sun
java
java
java
sun
beans
beans
sun
java
java
beans
sun
beans
beans

Don’t try to out-
guess me!

The “Runnable” pool of threads

t1

t2
t3

228

Creating our own thread
that goes to sleep

Topic 2: Objects/Classes

77

229

class Sleepy extends Thread {

 public void run () {
 while (true) {
 try { sleep (2000);
 }
 catch (Exception e) { }

 System.out.println("good morning");
 }
 } public static void main(String [] args) {

 Sleepy zzz = new Sleepy();
 zzz.start();
}

since we’re a thread we
can put ourself to sleep

230

Multi-Threaded Program
(kind-of)

main
thread sleepy

thread

sleepy lives
forever

231

Sleepy -- a closer look

sleepy
thread lives forever

wakes
periodically

A Timer

Topic 2: Objects/Classes

78

232

Timer

Timer
thread

when it wakes up we want it
to notify another object

233

Object-Oriented Design Problem

class Timer extends Thread {

 public void run () {
 while (true) {
 try { sleep (2000);
 }
 catch (Exception e) { }

 System.out.println("good morning");

 // --- how to notify someone else ??
 }
 }

234

Design Problem

Timer
FooBar

we want to alert a FooBar
object every 2 seconds

??

Timer needs a
foobar reference

Topic 2: Objects/Classes

7 9

235

Timer has its own foobar
class Timer extends Thread {
 FooBar foobar;

 public void run () {
 while (true) {
 try { sleep (2000);
 }
 catch (Exception e) { }

 foobar.wakeup();

 }
}

who’s foobar??

236

class Timer extends Thread {
 FooBar foobar;

 public Timer (FooBar f) { foobar =f; }

 public void run () {
 while (true) {
 try { sleep (2000);
 }
 catch (Exception e) { }

 foobar.wakeup();

 }
}

use constructor
to set internal
reference

OR...

237

class Timer extends Thread {
 FooBar foobar;

 public void register (FooBar f) { foobar =f; }

 public void run () {
 while (true) {
 try { sleep (2000);
 }
 catch (Exception e) { }

 foobar.wakeup();

 }
}

use method to
set internal
reference

Topic 2: Objects/Classes

80

238

class Timer extends Thread {
 FooBar foobar;

 public void register (FooBar f) { foobar =f; }

 public void run () {
 while (true) {
 try { sleep (2000);
 }
 catch (Exception e) { }

 foobar.wakeup();

 }
}

implications for
class FooBar?

239

class Timer extends Thread {
 FooBar foobar;

 public void register (FooBar f) { foobar =f; }

 public void run () {
 while (true) {
 try { sleep (2000);
 }
 catch (Exception e) { }

 foobar.wakeup();

 }
}

implications for
class Timer?

Timer ONLY works with FooBars

240

to make a Timer work with many
different classes requires the
use of interfaces

Topic 2: Objects/Classes

81

241

 Java Graphics and Events

242

Console Applications

• Input from the keyboard
• Typically involves parsing of input

strings
• Limited in interaction

243

Graphical User Interfaces

• User input through
– Buttons
– Pull down lists
– Menus
– Radio boxes
– Choice boxes

Topic 2: Objects/Classes

8 2

244

Part C Assignment
• Use the Java GUI classes to draw

several shapes on the screen
• Each shape has a x,y velocity
• Press a button and shapes will move

on the screen according to:
x = x + xVelocity
y = y + yVelocity

• Each button press results in ONE
update cycle

245

Basics of Screen Drawing

246

Display requires...

a Graphics object

an instance of the
Graphics class

g

g.drawRect(1,1,2,3)

Topic 2: Objects/Classes

83

247

g.drawOval(…)

a Graphics object

an instance of the
Graphics class

g

g.drawOval(2,2,2,3)

248

g.drawString(…)

a Graphics object

an instance of the
Graphics class

g

g.drawString(“hi”,8,8)
hi

249

how do you get a
graphics object?

Graphics g = new Graphics();

NO

Topic 2: Objects/Classes

84

250

how do you get a
graphics object?

void paintComponent(Graphics g) {

}

it’s passed
to you

g.drawRect(1,1,2,3);

251

before you can draw anything
you must understand the
graphics class relationships

252

void paintComponent(Graphics g) {

}

g.drawRect(1,1,2,3);

Component

MyComponent

override paintComponent

Topic 2: Objects/Classes

85

253

Component

Object

Container

JComponent Window

Frame

JFrame

JPanel

Graphics Hierarchy

254

Component

Container

Window

Frame

JFrameJFrame is-a Window

MyFrameYour Window

255

we don’t write
on windows

Component

Object

Container

JComponent Window

Frame

JFrame

JPanel

Topic 2: Objects/Classes

86

256

we write on
JPanels

override
paintComponent (Graphics g)

Component

Object

Container

JComponent

JPanel

MyJPanel

257

GUI Drawing

• Create a Window
– subclass JFrame

• Create a Panel to draw on
– subclass JPanel

• Add the panel to the window
– using the add method

258

GUI Drawing

• Create a Window
– subclass JFrame

default JFrame windows are DUMB!

- they have zero size and won’t go away

Topic 2: Objects/Classes

87

259

Example 7.1: FirstTest.java
import javax.swing.*;

class FirstFrame extends JFrame
{ public FirstFrame()
 { setTitle(“FirstFrame”);
 setSize(300, 300);
 }
}

public class FirstTest {
 public static void main(String[] args){
 JFrame frame = new FirstFrame();
 frame.show();
 }
} activates GUI thread

260

Example 7.1: FirstTest.java
import javax.swing.*;

class FirstFrame extends JFrame
{ public FirstFrame()
 { setTitle(“FirstFrame”);
 setSize(300, 300);
 }
}

Default frame size is 0 x 0 pixels
Before you can see a frame, you
need to give it a visible size

Window

Container

Frame

JFrame

261

FirstFrame lives forever

~Clicking on the close box only hides
the window, but does not close the
application

- x

Topic 2: Objects/Classes

88

262

Closing your App

~Options
4Under Solaris, select Destroy from the

system menu
4Under Windows, press Ctrl+C or click

on Close button in top right of shell
window

4Under Windows 95/98 or NT, carefully
press Ctrl+Alt+Del

263

Why does FirstFrame lives forever?

~Clicking on the close box sends a
message (triggers an event) that the
user has clicked the X - …but nobody
is receiving the message...

- x

264

We want..

~Somebody to execute System.exit(0)
when the X is pressed

- x

System.exit(0)

Topic 2: Objects/Classes

89

265

We need a listener...

~An object that implements an agreed
upon method and who then can shut
down with System.exit(0)

- x msg

some
object

266

Java Event Model

~Objects register with event sources
(e.g. a Window) to receive notification
that some event(s) have occurred

- x msg

objects
can

register
as Event
listenersA JFrame generates window events

267

Window Event Registration

~A Window (JFrame) supports an
addWindowListener(...) method

- x msg

Listener

Topic 2: Objects/Classes

90

268

Window-listener relationship?

- x

msg

some
object

addWindowListener(???type??)

WindowListenerInterface

269

WindowListener Interface

• void windowActivated (..)
• void windowClosed (..)
• void windowClosing (..)
• void windowDeactivated (..)
• void windowDeiconified (..)
• void windowIconified (..)
• void windowOpened (..)

only one
of interest
right now

270

WindowListener
Interface

specifies 7
methods

MyWindowListener
Class

must
implement
7
methods

implements

Topic 2: Objects/Classes

g 91

271

WindowListener
Interface

specifies 7
methods

MyWindowAdapter
Class

implements
7 (dummy)
methods

implements

WindowAdapter
Class

implements
1 (real)
method
for closing

void windowClosing (..)

272

Options for Window Listener
object

• Create separate class
– seen in complex apps
– many potential listeners

• Create anonymous inner class
– seen when no one else is interested in

events that may occur

273

MyJFrame

MyFoo implements
WindowListener

1. user is trying to
close the window

2. System.exit(0)

Topic 2: Objects/Classes

92

274

MyJFrame

MyFoo implements
WindowListener

note: the WindowListener lives
ONLY to service ONE object’s
Window events!

We, the programmer(s), don’t
need a reference to it

275

MyJFrame

implements
WindowListener

make it an anonymous inner class

276

Window

Container

Frame

JFrame

MyFrame

instance of MyFrame
(a JFrame)

WindowListener
object

window
event

Topic 2: Objects/Classes

93

277

Example 7.2: CloseableTest.java

import java.awt.event.*;
import javax.swing.*;

class MyJFrame extends JFrame {
 public MyJFrame()
 { setTitle(“CloseableFrame”);
 setSize(300, 200);
 addWindowListener(new
 WindowAdapter(){

 public void
 windowClosing(WindowEvent e)

 { System.exit(0); } });
 }
}

Inner class

278

Inner Class Syntax

addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 { System.exit(0); }
 });

Superclass

method that goes
with new (un-named)
subclass

279

public class CloseableTest {
 public static void main(String[] args){
 JFrame frame = new MyJFrame();
 frame.show();
 }
}

the Window that will
create and add
components to itself

Topic 2: Objects/Classes

94

280

How do I draw?

281

Component

Object

Container

JComponent Window

Frame

JFrame

JPanel

Graphics Hierarchy

282

Container

Window

Frame

JFrame

Drawing directly onto a frame is
not considered “good programming
practice,” though it is possible

Frames are
designed to
be containers
for
components

Topic 2: Objects/Classes

95

283

we draw/write on
JPanels

subclass and override
paintComponent (Graphics g)

Component

Object

Container

JComponent

JPanel

MyJPanel

note: a JPanel is also a
container and can hold
Buttons, Sliders, etc.

284

we draw/write on
JPanels

override
paintComponent (Graphics g)

JPanel

MyJPanel

class MyJPanel extends JPanel {
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawString(“Hello World”, 50, 50);
 }
}

285

• Each time a window needs to be
redrawn, no matter why, the event
handler notifies the window. This
causes paintComponent methods of
all components to be executed.

paintComponent(g)- x

hello

Topic 2: Objects/Classes

96

286

paintComponent (Graphics g)

• All drawing in Java must go
through a Graphics object

• All done in pixels -- (0, 0)
coordinate denotes the top-
left corner

- x

hello

paintComponent(g)

I give
you “g”

287

• Want to text messages or graphics in a
panel -- override the paintComponent
method.

• Never call the paintComponent method
yourself --it’s called automatically when:
– the user increases the size of the window
– if the user popped up another window that

covered the existing one
– the window is displayed for the first time
– If you need to force repainting of the screen,

call the repaint method instead of
paintComponent.

Important Tips to Remember

288

JPanel

MyJPanel

drawing surface

JFrame

MyJFrame

a closeable window

add the Panel to the Frame

Topic 2: Objects/Classes

97

289

Add-ing a Panel to a Window
(Frame)

MyJPanel

drawing surface

MyJFrame
a closeable window

Container contentPane =
 myJFrame.getContentPane();

1. Ask the JFrame for its
 contentPane container contentPane

290

MyJPanel

drawing surface

MyJFrame
a closeable window

MyJPanel jp = new MyJPanel();

contentPane.add(jp);

contentPane
2. Add Panel to container

291

Component

Object

Container

JComponent Window

Frame

JFrame

JPanel

Graphics Hierarchy

has an
add()
method

Topic 2: Objects/Classes

98

292

Buttons

293

Buttons

add to
JPanel

add to
JFrame’s contentPane

294

4. Buttons

2. contentPane

Creation Sequence

- x

1. JFrame

has-a

new

new
3. JPanel

Topic 2: Objects/Classes

99

295

Convention: put Buttons in their own JPanel

- x

JPanel to hold Buttons

JPanel for drawing

BUT you can draw on ANY JPanel

296

Responding to Button Clicks

ActionEvents and
ActionEventListeners

297

Buttons
- x

generate
ActionEvents i.e.
objects that contain
info about the button
click

send the message:
actionPerformed(ActionEvent evt)

to registered ActionListeners

Topic 2: Objects/Classes

100

298

Java Event Handling
• A listener object implements a

listener interface
• An event source is an object that can

register listener objects and send
them event objects

• The event source sends out event
objects to all registered listeners

• The listener objects uses the
information in the event object to
react to the event

299

Buttons

- x

1. create an instance of JButton

2. add it to a display surface

3. decide who will listen for button clicks

300

Buttons

- x

1. create an instance of JButton

JButton myButton =
new JButton(“NO”);

2. add to a JPanel [container]

3. decide who will listen for button clicks
buttonJPanel.add(myButton)

usual choice is the JPanel (as container)

NO

Topic 2: Objects/Classes

101

301

JPanel Double Duty

- x

JPanel holds Buttons

and can be setup as the
ActionListener for button
clicks (ActionEvents)

302

ActionListener Interface
• Requires method: actionPerformed()
• parameter: ActionEvent object

public class MyPanel extends JPanel
 implements ActionListener {

 public void actionPerformed(ActionEvent evt)
 { // button click response
 . . .
 }

303

Example: Which Button Was Clicked?
class ButtonPanel extends JPanel {
 public ButtonPanel() {
 yellowButton = new JButton(“Yellow”);
 blueButton = new JButton(“Blue”);
 redButton = new JButton(“Red”);

 add(yellowButton);
 add(blueButton);
 add(redButton);
 }

private JButton yellowButton;
private JButton blueButton;
private JButton redButton;

Topic 2: Objects/Classes

102

304

Which Button Was
Clicked???

Two ways to find out...

305

Technique One:
The getSource Method

• Ask the event object (parameter) for a
reference to the object that generated
the event:

Object source = evt.getSource();

if (source == yellowButton) . . .
else if (source == blueButton) . . .
else if (source == redButton) . . .
• Requires we keep references to the

buttons

306

Technique Two:
The getActionCommand Method

• Specific to ActionEvent class
• Use getActionCommand to returns the

string associated with the button label

String command = evt.getActionCommand();
if (command.equals(“Yellow”)) . . .;
else if (command.equals(“Blue”)) . . .;
else if (command.equals(“Red”)) . . .;

Topic 2: Objects/Classes

103

307

Panel as Container & Listener
public ButtonPanel ()
{ yellowButton = new JButton(“Yellow”);
 blueButton = new JButton(“Blue”);
 redButton = new JBUtton(“Red)”;

 add(yellowButton);
 add(blueButton);
 add(redButton);

 yellowButton.addActionListener(this);
 blueButton.addActionListener(this);
 redButton.addActionListener(this);
}

Constructor

308

Broader Scope of
ActionListener Interface

Used in different situations , e.g.:
• Button Pressed
• An item is selected from a list box with

a double click
• A menu item is selected
• ENTER key is clicked in a text field

